Paolo Calafiura, Vakho Tsulaia, Charles Leggett, '~
lllya Shapoval, Julien Esseiva, Rollin Thomas, A

Miha Muskinja PRPSISS. |||‘

4th US ATLAS HPC Meeting
Thursday 26 September 2019 BERKELEY LAB

L B N L Lawrence Berkeley National Laboratory

Introduction

S

: A
rrrrrrr |"'|

* |n view of the increasing availability of heterogeneous HPCs we are exploring
the applicability of a modern distributed execution framework for ATLAS

workflows— Ray1,

» Ray was originally designed for end-to-end large-scale Al applications and
aims to simplify complex parallel systems using a simple Python interface,

- It allows the user to easily express parallelism while also capturing data

dependencies,

- Efficiently handles processing
of large datasets across many
compute nodes.

* New project for us and it was

presented for the first time at
the ATLAS S&C Week in NY
this year in June.

26 September 2019

[1]: https://github.com/ray-project/ray

. = H
© N O
I I I
} 5 E
E \ E
E E \

O
I
|

\
\

Millions of tasks/s
!

O
O

1 1 111
1020304050060
number of nodes

Miha Muskinja

https://github.com/ray-project/ray

Advantages of using Ray for ATLAS workflows

* Ray Is widely used by the broader community and centrally maintained.
Using Ray would eliminate the need of supporting some of the ATLAS home-
built software,

* Developed by RiselLab at UC Berkeley. We are collaborating directly with the
developers (lon Stoica, et. al.),

* Proven to be scalable on HPCs,
* Ray is lightweight and easy to install (e.g. as a module on an HPC),

» Ray fits well into the modular scheme of Run 3 job scheduling as an
intermediate layer. Once we have the Ray workflow, we could also replace
Ray with any other task parallel framework (e.g. Dask, Spark).

26 September 2019 Miha Muskinja

First application: ATLAS Event Service with Ray— o

Interactive A
Node Current ATLAS default
. MPI Application :
Pilot B O e We implemented a
MPI Rank 1| yampl | Payload. AthenaMP prOtOtype of this
Liahweiah V| Worker .
runJobHPC Event Ranges : E'?(e\évue('igont Master > Worker SCheme Wlth Ray
(MPI Send/Recv) Wrapper O Worker
o Wi -
MPI Rank 2 | Yampl Payload. AthenaMP
MPI Rank 0 P Lighweight V|_Worker
Leightweight JEDI |- Execution Master D> Worker
: : Wrapper & worker
Job : : : :
... WN : WN .}
Scheduler S m——— M i e s e —————
Output File Names i
[m“.;lr’l fl_:')i(_‘r‘s(i."r]{':;;j*.f’) MPI Ra'nk 3 | Yampl Payload. AthenaVMPWorke‘
Executon | [Haster | > worke
Wrapper LN Worker
............... WN...
I /1O I
Shared File System
\ _

Figure 1. Schematic view of Yoda iopscience/10.1088/1742-6596/664/9/092025/pdf

26 September 2019 Miha Muskinja

https://iopscience.iop.org/article/10.1088/1742-6596/664/9/092025/pdf

Ray-based ATLAS Event Service: Raythena dHAI

Main’ node f any CPU core ready, send Ray Actors (1 per node)
”) AthenaMP (7 =\
Ray new event range 1o Athe p R
— j " AthenaMP
. y) M Dass: 7
‘ Actor reports finished I I 1€55age Fassing
P events back to the Driver. v l_LbrarX f(yanlprl))
—
Athena JObS to In case of a failure, send the g VAN VAN VAN VAN y,
merge the output event range again to the first 0 O f O f
when enough available worker. e
events are \\§ ,
processed
L y
Pointers to event ranges from §
input files to be processed github.com/ray-project/ray

26 September 2019 Miha Muskinja

https://github.com/ray-project/ray

Working example on Cori at NERSC f\m

» Successfully tested the Raythena workflow on Cori Haswell and KNL nodes
at NERSC,

* We are running ID-only simulation jobs (for faster turnaround)
with recent master nightlies,

* Athena merge jobs are spawned on-the-fly with HITSMerge tf,
» Largest test that we tried so far:

- 60 Haswell nodes with 32 cores each,

- 100k events to process with 1 event pre ‘Event Range’,

- Spawn merge jobs every 100 events to form 1000 merged HITS files.
* No bottlenecks found so far in Ray.

26 September 2019 Miha Muskinja

Close-up — two AthenaMP instances on Haswell nodes)

Athenal worker 31
Athenal_ worker 30
Athenal worker 29
Athenal worker 28
Athenal_worker_27
Athenal worker 26
Athenal_worker_ 25
Athenal_worker_24
Athenal_worker 23
Athenal_worker_22
Athenal_worker 21
Athenal_worker_20
Athenal_worker_19
Athenal worker 18
Athenal_worker_17
Athenal worker 16
Athenal_worker_ 15
Athenal worker 14
Athenal_worker_13
Athenal worker 12
Athenal worker 11
Athenal worker 10
Athenal_ worker 9
Athenal worker 8
Athenal_worker 7
Athenal worker 6
Athenal worker 5
Athenal worker 4
Athenal worker 3
Athenal worker 2
Athenal worker 1
Athenal_worker_ 0
AthenaO_worker 31
AthenaO_worker_30
AthenaO_worker_29
AthenaO_worker_28
AthenaO_worker_27
AthenaO_worker 26
AthenaO_worker 25
AthenaO_worker 24
AthenaO_worker 23
AthenaO_worker 22
AthenaO_worker 21
AthenaO_worker 20
AthenaO_worker 19
AthenaO_worker_18
AthenaO_worker 17
AthenaO_worker_16
AthenaO_worker 15
AthenaO_worker_14
AthenaO worker 13
AthenaO_worker 12
AthenaO worker 11
AthenaO_worker_ 10
AthenaO worker 9
AthenaO_worker 8
AthenaO_worker_7
AthenaO_worker 6
AthenaO_worker 5
AthenaO_worker 4
AthenaO_worker_3
AthenaO_worker_2
AthenaO_worker_1
AthenaO_worker_0

AthenaMP
Initialization

Event
Processing

Worker
Initialization

Cori Haswell Nodes
- 32 cores / node
- 128 GB / node

03:21 03:31 03:41

26 September 2019 Miha Muskinja

https://www.nersc.gov/users/computational-systems/cori/configuration/cori-phase-i/

: -
m A S e O o
r S T ® L © 3 O
o N =@ o= 9 Q o
O ®© s Q = © o= b |
= o =5 = 0
X 3 |
nﬂu % N e i
Ol

N
—i
(@
(@
—i
(@
d —i
n —
L " —
Z o [E
p— -] k
K 4 1))
-
1 M
O N L
) BN =
D -
c —i
a (@
i N
) M
n —
H .
ol ™
— X
a —
D N
- 0N
A —
(@
—i
i) mM (@)
— — ~
-
Q. N O
- O O
- M -
e —i ()
(==
s rrrrrrrrrrrnerrrrnrrrnnrrrerrerrrrennrrerrernneenerrnrrrrnrerreregrrrrnngreereerrrergereennrnnpereregrrreenerrnererreerreereereen %
o SOOI PP IAAAAAAAAEREEEaraaal L RO aaaaaa MMM SIS IOOOOOOO ittt L S
— R O OO R 000000000 6
00 WWWWWWWW 00 WWWWWWWWW
SRR e e e ey [1 1 111 1 1 1 ES SRS S SRS S e e e e e e e e [11111111 2
NN NN N N N N N N N N e e N N N N N N (e s s s s E NN B

https://www.nersc.gov/users/computational-systems/cori/configuration/knl-processor-modes/

-~

Cori Haswell Nodes

- 32 cores / node
- 128 GB / node

i

_— —

s

—_— —

e ———————

e ——
S —
e ———

. — ————aa

—
T

Cut-off optimization possible
==___ to save allocation time

27 22:59 27 23:09 27 23:19 27 23:29 27 23:39 27 23:49 27 23:59 28 00:09

26 September 2019

Miha Muskinja

' A
rrrrrrr !

AthenaMP
Initialization

Event |
Processing

Worker
Initialization

On-the-fly merging
1000 merge jobs,
100 events per job

https://www.nersc.gov/users/computational-systems/cori/configuration/cori-phase-i/

Raythena running scheme

$ sbatch —image mmuskinj/centos7-atlasos-ray:1.0.0 —module=cvmfs

&

gocker

K $ shifter ./ray start head.sh \

$ srun shifter ./ray start other.sh &

k $ shifter ./run raythena.sh /

» Ray, Raythena, and Athena are all running in a container on all nodes,

* At NERSC we are using Shifter containers which are built from Docker
Images,

» Can be ported to other HPCs without too much effort.

26 September 2019 Miha Muskinja

Future plans

* We present a proof-of-concept Ray application for the ATLAS Event Service,
* Our next steps include two main projects:

- Expand horizontally: turn this into a ‘production quality’ application with full
error handling and connection to the outside world (i.e. Panda, Harvester,
Pilot v2, ...),

- Vertical integration: reproduce other layers of ATLAS workflow with Ray,

* Avallable person-power at LBL.:

- Paolo, Vakho, Charles, lllya, Miha, Julien Esseiva (MSc at HES-SO
Switzerland, with us until Feb 2020), Rollin Thomas (NERSC).

26 September 2019 Miha Muskinja

Connecting to the outside world (horizontal expansion) /\IA

» Our goal for this workshop is to work together with the experts (Doug, Paul,

Tadashi, et. al.) to figure out the details and benefits of using Ray for Run 3 job
scheduling,

* \We have a desighated hands-on session tomorrow:
hitps://indico.physics.lbl.qgov/indico/event/955/#b-293-breakouts-ray-event-serv

{ remdive WXl — 10:50 Breakouts: Ray Event Service discussion
Node :)) Conveners: Doug Benjamin (ANL), Miha Muskinja
| Pilot MPlApplcation
Discussion
; : | MPI Rank 1| yampl | Payload. AthenavMPW -
: ; il Lighweight |_Worker || i
+| [runJobHPC | | Event Ranges 1] Execution K—> D worker J| i : :
: (MPI Send/Recv) : Wrapper B Worker]| Join Zoom Meeting
) WN https://Ibnl.zoom.us/j/430523132
................ | p|dAmMp One tap mobile
Y [mPiRanko || Mo Rank 2 | vampl | o | +16465588656,430523132# US (New York)
- | Leightweight JEDI |«————{ Execution K— +16699006833,430523132# US (San Jose)
Job rapper
S%heduler | L WN NN] WN . Dial by your location
.. : +-| 646 558 8656 US (New York)
Payload. AthenaMP
ayloa e" +1 6§9 900 6833 US (San Jose)
KD (Mt | > womer | Meeting ID: 430 523 132
= Find your local number: https://zoom.us/u/auVyrMbBC
Join by SIP
430523132@zoomcrc.com

- (5) Live notes
Shared File System

Figure 1. Schematic view of Yoda

26 September 2019 Miha Muskinja

https://indico.physics.lbl.gov/indico/event/955/#b-293-breakouts-ray-event-serv

S

Digging deeper into Athena (vertical expansion) ——

* The long-term project is to interface Athena/Gaudi algorithms directly to Ray
for a much finer control over scheduling the workload,

* This would replace the current event loop with Ray and enable scheduling of
a single event across several nodes:

- Advantage: maximize throughput by more efficient/tailored scheduling of
algorithms to computing resources (e.g., CPU vs GPU),

* Our most promising idea is to use Athena’s python EventLoopManager and
rewrite it with Ray wrappers.

PyAthenaEventLoopMgr.py

for name in theApp.TopAlg:
alg = theApp.algorithm(name[name.find('/')+1 :])

1f not alg._1ialg: tOpsequenCe

alg.retrievelnterface() .
1alg = alg._1alg - AlgOrlthm1 >

ialg.execState(ctx).reset() - ' >
result = 1alg.sysExecute(ctx) Algorlthmz RAY
1f result.isFailure(): >

from AthenaCommon.Logging import log as msg)

msg.error("Execution of algorithm %s failed", name) - AlgOrltth >
return result.getCode()

26 September 2019 Miha Muskinja

https://gitlab.cern.ch/atlas/athena/blob/master/Control/AthenaServices/python/PyAthenaEventLoopMgr.py

Conclusion

* We are exploring applicability of a distributed execution framework (Ray) to
ATLAS workflows,

» So far we have a working prototype of a Ray-based ATLAS Event Service,

- We are working with the experts on integrating this system in the ATLAS’
global job scheduling system via Panda,

- A stand-alone version successfully tested on Cori Haswell and KNL nodes,
- Can be fully run from containers and is therefore portable to other systems,

* Longer-term-plan is to divide the ATLAS workflow into base components
(Algorithms) and interface them directly to Ray.

26 September 2019 Miha Muskinja

Ray documentation and tutorials /\IA

* Ray has a very rich documentation hosted on readthedocs:
- https://ray.readthedocs.io/en/latest/index.html,
» Hands-on tutorials with exercises available in form of jupyter notebooks,
» Since Feb 2019, Intel hosts an 8-week course about distributed Al computation

with Ray: https://software.intel.com/en-us/ai/courses/distributed-Al-ray.
DISTRIBUTED AIWITH THE RAY FRAMEWORK

Summary
Prerequisites
Learn how to build large-scale Al applications using Ray, a high-performance distributed execution

framework from the RISELab at UC Berkeley. Simplify complex parallel systems with this easy-to-use Python™ programming

Python* framework that comes with machine learning libraries to speed up Al applications. Deep Learning
Calculus

This course provides you with practical knowledge of the following skills: Linear algebra

o Use remote functions, actors, and more with the Ray framework

e Quickly find the optimal variables for Al training with Ray Tune

e Distribute reinforcement learning algorithms across a cluster with Ray RLIib For Professors: Request Free
e Deploy Al applications on large computer clusters and cloud resources Access to Curriculum

The course is structured around eight weeks of lectures and exercises. Each week requires
approximately two hours to complete.

GitHub* Repository for the Ray Framework

26 September 2019 Miha Muskinja

https://ray.readthedocs.io/en/latest/index.html
https://software.intel.com/en-us/ai/courses/distributed-AI-ray
https://software.intel.com/en-us/ai/courses/distributed-AI-ray

Ray 101 /\I i

* One driver application (running on any compute node) controls all nodes in a
cluster (HPC) that are connected via TCP to a redis server,

» Tasks are first scheduled locally (Local Scheduler) if resources are available,
otherwise they are scheduled globally via the Global Scheduler.

Worker Worker Worker

T

Local Scheduler
~ 1L __ _______._

Driver Worker Worker

_ vh pf

Local Scheduler

Global Global
Scheduler

-3 Schedule = Load

—P tasks

26 September 2019 Miha Muskinja

https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/

Ray Application Layer

» Ray maintains three types of processes:

- Driver. a process executing the user program,

- Worker. a stateless process that executes tasks invoked by the driver or
another worker. Workers are started automatically and execute tasks
serially without maintaining a local state,

- Actor. a stateful process that
executes only the method it
exposes. They execute
methods serially and each
method depends on the
state resulting from the
previous execution.

26 September 2019

App Layer
A

System Layer (backend)

Node

Driver Worker

Local Scheduler

Global

Scheduler

‘“Fo

Miha Muskinja

Node

Node

Actor Driver

Worker || Worker

Object Store K—> Object Store

K——> Object Store

Local Scheduler

Local Scheduler

e

obal Control Store (GCS) | J Web Ul

Object Table

/ Debugging

Task Table

Function Table

%’ Tools
Al Profiling Tools

Event Logs

ﬂ Error Diagnosis

-~

Asynchronous communication between the Driver and Actors _—

* Asynchronous communication is implemented in a few 100 python lines using Ray
explicit parallelism expressions,

* There is no redundant communication; Actors independently communicate with
AthenaMP.
Actor reports back either:
Di7h'/=17| * Ready for new event,
» Finished processing an event range,
- Driver is aware of the processed events,
» Event range failed.
Driver send back either:
* New event range for processing,
 |nstruction to communicate with AthenaMP,

* Instruction to terminate AthenaMP.

Driver pings all Actors
simultaneously

Actor communicates with
AthenaMP via yampl

A1l

3o

00O

26 September 2019 Miha Muskinja

Ray Functions and Actors

* A Ray parallel application is constructed with python decorations:

Task executed at a worker Actor process

@ray.remote
class Counter(object):

def __1nit__(self):
self.value = 0

@ray.remote
def simpleFunction(a, b):

time.sleep(5)

return a + b def i1ncrement(self):
self.value += 1

return self.value

= simpleFunction.remote(2, 4)

print(ray.get(r))

Driver application

26 September 2019 Miha Muskinja

Athena framework in ATLAS /\HAI

* Athena is the main software framework in ATLAS used for all data analysis
steps: event generation, simulation, digitization, reconstruction, user analysis,

* Athena is based on the common Gaudi framework that is used by ATLAS,
LHCb and FCC,

» Software that we are designing and covering in this talk is tailored to
efficiently run Athena applications on HPCs.

Programming languages used in this repository Commits per day of month

120

® C++ 64.46 % 100
® Python 2792 % 80
® C 2.46 % o0
40

CMake 1.22 %
20

® Fortran 113 %

ANLDS K 01 9D g,\g,\\ »\Q/\Q}»\b(»\c.)»\@\'\ \%\Q(LQ(L’\(L@(L%(LD*(LGJ(L@(Z\ (23)(29(56(5’\

26 September 2019 Miha Muskinja 21

https://gitlab.cern.ch/atlas/athena
http://proj-gaudi.web.cern.ch/proj-gaudi/

